
Biol. Rev. (2014), pp. 000–000. 1
doi: 10.1111/brv.12155

Larval dispersal and movement patterns of coral
reef fishes, and implications for marine reserve
network design

Alison L. Green1,5,∗, Aileen P. Maypa2, Glenn R. Almany3,5, Kevin L. Rhodes4,
Rebecca Weeks5, Rene A. Abesamis6, Mary G. Gleason7, Peter J. Mumby8 and Alan
T. White9

1The Nature Conservancy, 245 Riverside Drive, West End, Brisbane, Queensland, Australia. 4101
2Coastal Conservation and Education Foundation, PDI Condominium, Archbishop Reyes Street, Banilad, Cebu City,
Philippines. 6000
3CRIOBE-USR 3278, CNRS-EPHE-UPVD and Laboratoire d’Excellence “CORAIL”, 58 Avenue Paul Alduy, 66860 Perpignan
Cedex, France
4College of Aquaculture, Forestry and Natural Resource Management, University of Hawaii at Hilo, 200 W. Kawili Street, Hilo,
HI U.S.A. 96720
5Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland,
Australia. 4810
6Angelo King Center for Research and Environmental Management, Silliman University, Barangay Bantayan, Dumaguete City,
Negros Oriental, Philippines. 6200
7The Nature Conservancy, 99 Pacific Street, Monterey, CA U.S.A., 93940
8Marine Spatial Ecology Laboratory, School of Biological Sciences, University of Queensland, St Lucia, Queensland, Australia.
4072
9The Nature Conservancy, 923 Nu’uanu Avenue, Honolulu, HI U.S.A. 96817

ABSTRACT

Well-designed and effectively managed networks of marine reserves can be effective tools for both fisheries
management and biodiversity conservation. Connectivity, the demographic linking of local populations
through the dispersal of individuals as larvae, juveniles or adults, is a key ecological factor to consider inmarine
reserve design, since it has important implications for the persistence of metapopulations and their recovery
from disturbance. For marine reserves to protect biodiversity and enhance populations of species in fished
areas, they must be able to sustain focal species (particularly fishery species) within their boundaries, and be
spaced such that they can function as mutually replenishing networks whilst providing recruitment subsidies to
fished areas. Thus the configuration (size, spacing and location) of individual reserves within a network should
be informed by larval dispersal and movement patterns of the species for which protection is required. In the
past, empirical data regarding larval dispersal and movement patterns of adults and juveniles of many tropical
marine species have been unavailable or inaccessible to practitioners responsible for marine reserve design.
Recent empirical studies using new technologies have also provided fresh insights into movement patterns of
many species and redefined our understanding of connectivity among populations through larval dispersal.
Our review of movement patterns of 34 families (210 species) of coral reef fishes demonstrates that movement
patterns (home ranges, ontogenetic shifts and spawning migrations) vary among and within species, and are
influenced by a range of factors (e.g. size, sex, behaviour, density, habitat characteristics, season, tide and
time of day). Some species move <0.1–0.5 km (e.g. damselfishes, butterflyfishes and angelfishes), <0.5–3 km
(e.g. most parrotfishes, goatfishes and surgeonfishes) or 3–10 km (e.g. large parrotfishes and wrasses), while
others move tens to hundreds (e.g. some groupers, emperors, snappers and jacks) or thousands of kilometres
(e.g. some sharks and tuna). Larval dispersal distances tend to be <5–15 km, and self-recruitment is common.
Synthesising this information allows us, for the first time, to provide species, specific advice on the size, spacing
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and location of marine reserves in tropical marine ecosystems to maximise benefits for conservation and
fisheries management for a range of taxa. We recommend that: (i) marine reserves should be more than
twice the size of the home range of focal species (in all directions), thus marine reserves of various sizes
will be required depending on which species require protection, how far they move, and if other effective
protection is in place outside reserves; (ii) reserve spacing should be <15 km, with smaller reserves spaced
more closely; and (iii) marine reserves should include habitats that are critical to the life history of focal
species (e.g. home ranges, nursery grounds, migration corridors and spawning aggregations), and be located
to accommodate movement patterns among these. We also provide practical advice for practitioners on how
to use this information to design, evaluate and monitor the effectiveness of marine reserve networks within
broader ecological, socioeconomic and management contexts.

Key words: connectivity, larval, dispersal, movement, marine, reserve, tropical.

CONTENTS

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
II. Movement patterns of adults and juveniles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

(1) Home ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
(a) Factors influencing home range size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
(b) General patterns in home range size among taxa and trophic groups . . . . . . . . . . . . . . . . . . . . . . . . 15

(2) Spawning migrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
(3) Ontogenetic habitat shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

III. Larval dispersal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
IV. Implications for conservation and management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

(1) Implications for marine reserve network design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
(a) Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
(b) Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
(c) Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
(d) Consideration of broader ecological and social factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

(2) Implications for other management strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
(3) Practical advice for practitioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
VI. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
VII. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
VIII. Supporting information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

I. INTRODUCTION

Marine reserves (defined here as areas of ocean that are
protected from extractive and destructive activities) can
be an effective tool for both conservation and fisheries
management in tropical marine ecosystems (Russ, 2002;
Lester et al., 2009). Marine reserves can increase the
diversity, density, biomass, body size and reproductive
potential of coral reef fishes (particularly focal fisheries
species) within their boundaries (Lester et al., 2009;
Babcock et al., 2010; Russ & Alcala, 2011), and provide
conservation and fisheries benefits to surrounding areas
through the export of eggs, larvae, juveniles and adults
to other reserves and fished areas (Russ, 2002; Halpern,
Lester & Kellner, 2010; Harrison et al., 2012).
The design and effective implementation of networks

of marine reserves is critical to maximise their ben-
efits to both conservation and fisheries management
(Walmsley & White, 2003; Gaines et al., 2010). Con-
nectivity, the demographic linking of local populations

through the dispersal of individuals as larvae, juveniles
or adults (Sale et al., 2005), is a key ecological factor to
consider in marine reserve design, since it has impor-
tant implications for the persistence of metapopulations
and their recovery from disturbance (Botsford, Micheli
& Hastings, 2003; Almany et al., 2009; McCook et al.,
2009). Of particular importance are ecological patterns
of connectivity through larval transport and juvenile or
adult movement, which operate at different temporal
and spatial scales than those that influence genetic (or
evolutionary) patterns of connectivity (Cowen, Paris &
Srinivasan, 2006; Foster et al., 2012).
Most coral reef fish species have a bipartite life cycle

where larvae are pelagic before settling out of the plank-
ton and forming an association with coral reefs. These
species vary greatly in how far they move during their
life-history phases (Palumbi, 2004), although larvae of
most species have the potential to move much longer
distances (tens to hundreds of kilometres: Cowen et al.,
2006; Jones et al., 2009) than adults and juveniles,
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which tend to be more sedentary (with home ranges
<1m to a few kilometres: Russ, 2002). Exceptions
include coral reef species where adults and juveniles
exhibit large-scale (tens to hundreds of kilometres)
ontogenetic shifts in habitat use (e.g. among coral reef,
mangrove and seagrass habitats: Nagelkerken et al.,
2001; Chin et al., 2013a) or migrations to fish spawning
aggregation sites (e.g. Starr et al., 2007; Rhodes et al.,
2012), and pelagic species that range over much longer
distances (hundreds to thousands of kilometres e.g.
Ortiz et al., 2003).
When adults and juveniles leave the boundary of

a marine reserve, they become vulnerable to fishing
mortality (Kramer & Chapman, 1999; Gaines et al.,
2010). However, larvae leaving a reserve can generally
disperse without elevated risk because of their small size
and limited exposure to fisheries (Gaines et al., 2010).
Thus, consideration of the spatial scale of movement of
coral reef fish species at each stage in their life cycle is
critically important in designing the configuration (size,
spacing and location) of networks of tropical marine
reserves (Kramer & Chapman, 1999; Palumbi, 2004;
Botsford et al., 2009b; Gaines et al., 2010).
Where movement patterns of focal species are known,

this information can be used to inform guidelines or
decisions about the configuration of marine reserves
to maximise benefits to both fisheries and conserva-
tion (Botsford et al., 2003; Palumbi, 2004; Jones, Srini-
vasan & Almany, 2007; Gaines et al., 2010). For example,
movement studies were used to develop rules of thumb
for minimum and preferred size ranges of marine pro-
tected areas (MPAs) in a temperate system in California,
and species-specific information was used to communi-
cate with stakeholders regarding which types of species
would best be protected byMPAs of different sizes (Glea-
son et al., 2013; Saarman et al., 2013). However, the
empirical information required to apply this approach
to tropical marine ecosystems has yet to be synthesised
in a format useful for marine reserve design (Sale et al.,
2005; Botsford et al., 2009b). Recent advances in tech-
nology, such as the use of acoustic and satellite teleme-
try, have also provided new insights into spatiotemporal
movements and habitat requirements of adults and juve-
niles of many species that need to be considered.
Recent empirical studies have also redefined our

understanding of larval dispersal and connectivity
among populations (Jones et al., 2009; Harrison et al.,
2012; Almany et al., 2013) These studies have demon-
strated that self-recruitment (the proportion of recruits
that are the offspring of parents in the same population)
and restricted larval dispersal are more common than
previously thought, indicating that even small marine
reserves can provide recruitment benefits within and
close to their boundaries (Planes, Jones & Thorrold,
2009; Weeks et al., 2010). These results provide an
imperative to update recommendations for marine
reserve network design, and to re-examine the level of

benefits that many small and closely spaced reserves
can generate for fish populations, particularly if they
are combined with other management tools (Hilborn,
Micheli & De Leo, 2006).
Here we review and synthesise the best available infor-

mation regarding adult, juvenile and larval movement
patterns of coral reef and associated (coastal pelagic)
fish species, much of which has only become available
since the most recent reviews on movement and larval
dispersal of these species were conducted by Kramer &
Chapman (1999) and Jones et al. (2009). We use this
information to refine advice regarding the configura-
tion of networks ofmarine reserves, and implications for
other management strategies, to achieve conservation
and fisheries objectives in tropical marine ecosystems.
We also provide practical advice for field practition-
ers regarding how to use this information to improve
marine reserve network design within broader ecologi-
cal and socioeconomic contexts.

II. MOVEMENT PATTERNS OF ADULTS AND
JUVENILES

We distinguish three types of movement of adult and
juvenile coral reef and coastal pelagic fish species: home
ranges, spawning migrations and ontogenetic shifts in
habitat. Each of these movement types is described
below, based on a synthesis of the best available informa-
tion for 34 families and 210 species provided in Table 1
(for additional details see online Appendix S1).
This information is extremely useful for MPA practi-

tioners, since it will allow them to undertake detailed
discussions with governments, fishermen, communities
and other stakeholders regarding movement patterns
of focal species for protection and the implications of
these for marine reserve size. To facilitate such discus-
sions, we provide an illustrative figure that summarises
fishmovement for a range of taxa by distance (Fig. 1). In
this figure, we used conservative measurements of how
far fish move that excluded outliers and were indicative
of movement patterns for taxa across studies.
In most cases, we used empirical studies that directly

measured movement using methods that include
tag-mark-recapture, passive and active acoustic teleme-
try, satellite tracking and underwater observations (see
online Appendix S1). Only in rare cases, where direct
empirical measurements were either not available or
inadequately represented movement patterns of key
species, did we include estimates derived from other
methods, i.e. we used size-class distributions and age
estimations from otoliths to describe ontogenetic habi-
tat shifts by a focal fisheries species (Caranx sexfasciatus:
Maypa, 2012), and estimates of spawning movements of
an endangered wrasse (Cheilinus undulatus) and several
species of herbivore from a recognised expert in that
field (Colin, 2010, 2012). These estimates may require
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validation by empirical measurements of movement in
future.
Each of the methods used to measure movement pat-

terns of adults and juveniles has its strengths and weak-
nesses. For well-designed experiments (with adequate
sample sizes conducted over appropriate spatiotempo-
ral scales for the study species), methods that directly
measure both the spatial and temporal components of
movement patterns are considered the most reliable
(for further details see online Appendix S2).
For acoustic telemetry, spatial data is typically analysed

and subsequently viewed using several measurements
(see online Appendix S2). Where possible, we reported
kernel utilisation distributions with a 95% probability of
location (KUD95), because they provide a conservative
estimate of home range that includes both the core area
of use and migrations to feeding and often to spawning
areas. Where KUD95 was not available, we used the
minimum convex polygon (MCP), which provides a
more simplistic estimation of the home range of the
individuals examined during the study.
Because empirical measurements of movement

were provided in the literature as both linear dis-
tances and home ranges (area), we standardised by
converting all values to maximum linear distance in
kilometres (between movement boundaries in the
longest dimension) because the asymmetrical shape of
some home ranges (Kramer & Chapman, 1999) made
converting distances to area more problematic. Where
only areal measurements were provided, we either
obtained maximum linear distances from the authors
or measured them from figures in papers. Where this
was not possible, we converted areas to linear distance
using the formulae for a circle or square (modified from
Kramer & Chapman, 1999) for species where home
ranges are small relative to patches of appropriate habi-
tat (e.g. for Sparisoma spp.: Mumby & Wabnitz, 2002).

(1) Home ranges

The home range of a fish is the area in which an indi-
vidual spends the majority of its time and engages in
most of its routine activities including foraging and rest-
ing (Kramer & Chapman, 1999; Botsford et al., 2009a;
Gruss et al., 2011). Many species also undertake regular
movements to and from resident spawning aggregations
(e.g. parrotfishes, wrasses and surgeonfishes: Claydon,
2004; Domeier, 2012), which are considered to be within
the home range of participating individuals (Kramer &
Chapman, 1999). Larger scale movements to transient
spawning aggregations are considered to be spawning
migrations outside their home ranges (see Section II.2
for definitions).

(a) Factors influencing home range size

Home range size varies among and within species
(Table 1), and is influenced by a range of factors

(Kramer & Chapman, 1999; Speed et al., 2010; Gruss
et al., 2011).Movement distances generally increase with
increasing body size, with larger species (and individ-
uals) tending to exploit wider areas and greater dis-
tances than smaller ones (Kramer & Chapman, 1999;
Palumbi, 2004), probably because larger individuals
needmore space to provide enough resources to accom-
modate their greater energetic requirements and range
of behaviours (Speed et al., 2010; Gruss et al., 2011). For
example, Knip et al. (2011) found that older sharks (Car-
charhinus amboinensis) used larger areas and undertook
more excursions from their home ranges than younger
ones. However there are some exceptions, for example
some jacks (e.g. Caranx ignobilis and C. melampygus)
undertake long-distance excursions of tens to hundreds
of kilometres (Tagawa & Tam, 2006; Dunlop & Mann,
2012), but adults tend to use core areas <5–10 km long
(Holland, Lowe & Bradley, 1996; Meyer, Holland &
Papastamatiou, 2007a).
Habitat characteristics such as reef type, structure,

size and shape can also influence movement patterns
(Kramer & Chapman, 1999; Gruss et al., 2011), where
home ranges are likely to be smaller for species in habi-
tats with more available food and shelter compared to
habitats where food and shelter are scarce (Gruss et al.,
2011). For example in the Caribbean, Semmens, Brum-
baugh & Drew (2005) found that due to differences in
the amount and distribution of resources, surgeonfish
(Acanthurus coeruleus) territories are larger in areas of
reef pavement (that have low biogenic structure) than
in areas of reef crest (that have high biogenic structure).
Similarly, Zeller (1997) found that the influence of reef
type and shape are reflected in the home ranges of a
coral grouper (Plectropomus leopardus) on the Great Bar-
rier Reef, i.e. home ranges on continuous fringing reefs
are significantly smaller than on isolated patch reefs.
Some coral reef species also make crepuscular move-

ments on a daily basis between daytime resting areas and
nightime feeding areas (Kramer & Chapman, 1999).
Often, these activities occur in different habitat types,
and the home range consists of two areas joined by a
narrowmovement path. For example, in the Caribbean,
many species of grunt (Haemulon spp.) rest during the
day on coral reefs and move tens to hundreds of metres
to feed over soft substrata at night (Burke, 1995; Beets
et al., 2003). Since some species may move long dis-
tances between resting and feeding habitats (e.g. the
emperor Lethrinus nebulosus moves up to 1 km between
lagoon patch reefs and soft bottoms each day: Chateau
& Wantiez, 2008b), they sometimes have home ranges
that are larger than species whose home ranges include
only one habitat type (Kramer & Chapman, 1999).
Some species also exhibit movement patterns in

response to social organisation and behavioural
life-history traits. Species and individuals that exhibit
territoriality and intra- and interspecific aggression
tend to have a strong attachment to sites, limiting their
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home range size (Afonso et al., 2008). Territory size
also varies among and within species, where size can be
influenced by many factors including substrate rugos-
ity, harem size and competition (Mumby & Wabnitz,
2002). Territory size may also differ between sexes. For
example in species that live in harems composed of a
dominant male and several females, males have larger
territories than females (Shpigel & Fishelson, 1991;
Sakai & Kohda, 1995).
Fish movement patterns are also influenced by

density-dependent factors (reviewed in Gruss et al.,
2011), including where they are driven by positive
or negative interactions with conspecifics or species
belonging to the same guild (e.g. the unicornfish Naso
vlamingii moves away from conspecifics in high-density
areas: Abesamis & Russ, 2005) or where species exhibit
movements in response to the density of their prey or
predators (Hixon & Carr, 1997).
Home range size in some species also varies with sea-

son, tide and time of day (Meyer et al., 2007a; Speed
et al., 2010; Barnett et al., 2012). For example, many
shark species tend to have small daytime home ranges
and use larger areas at night, while othersmake seasonal
migrations related to prey movements and environmen-
tal gradients (reviewed in Speed et al., 2010). Juvenile
snappers and emperors also use different habitats in dif-
ferent seasons or tidal phases (Dorenbosch et al., 2004;
Mellin, Kulbicki & Ponton, 2007).

(b) General patterns in home range size among taxa and
trophic groups

Some fishes are found predominantly in and around
coral reef environments (including associated sand,
rubble and rocky areas) and depend on coral reefs
for food and/or shelter (Bellwood, 1988). The scale
of home range movements of these species is highly
variable among and within families (Table 1 and Fig. 1,
for further details see online Appendix S1).
Some coral reef fishes have very small home ranges

(<10–20m long) that are limited to one site or habi-
tat. They tend to include very small species such as car-
dinalfishes, gobies, some seahorses, most damselfishes
and some angelfishes (e.g. Centropyge ferrugatus). Some
small- to medium-sized coral reef species also have
small home ranges or territories (<0.1 km long) includ-
ingmost butterflyfishes, soldierfishes, squirrelfishes and
filefishes (e.g. Cantherhines pullus), while others move
further (but still <0.5 km) such as some butterflyfishes
and angelfishes (e.g. Chaetodon striatus and Pomacanthus
paru: Chapman & Kramer, 2000).
Herbivorous reef fishes show a variety of movement

patterns. Some surgeonfishes (e.g. Acanthurus lineatus),
parrotfishes (e.g. Sparisoma spp.) and damselfishes (e.g.
Pomacentrus spp.) are territorial, and aggressively defend
feeding or breeding territories that range from <1 to
∼20m across. Others form roving schools or have home

ranges that include movements between nocturnal shel-
ters, feeding and spawning sites (e.g. the surgeonfish
A. nigrofuscus: Mazeroll & Montgomery, 1995). Home
range sizes formost surgeonfishes and unicornfishes are
<0.3–1 km long, although some are several kilometres
long (e.g. for A. nigrofuscus and Naso lituratus). Similarly
most parrotfishes do not move very far (<0.1–0.5 km
for most Sparisoma spp., and small Scarus and Chlorurus
species), although some have home ranges up to 3 km
across (e.g. some larger Chlorurus and Scarus species).
The largest parrotfish species, Bolbometopon muricatum,
may move up to 10 km a day (Hamilton, 2004).
Home ranges for other herbivores such as sea chubs

(Kyphosus spp.) have also been recorded to extend up
to 3–5 km across. By contrast, most rabbitfishes have
home ranges <3 km long, with at least one species
(Siganus sutor) moving long distances (30 km) includ-
ing undertaking confirmed spawning migrations >3 km
long (Samoilys et al., 2013).
Coral reef piscivores such as groupers also show a vari-

ety of movement patterns. Some species are sedentary
and have small home ranges or territories <100m long
(e.g. most Cephalopholis and some Epinephelus species),
while others may have home ranges several kilometres
across (e.g. some Epinephelus and Plectropomus species).
A few species also undergo long-distance spawning
migrations of tens to hundreds of kilometres (e.g.
E. fuscoguttatus and E. striatus: see Section II.2).
Variation in home range size is also apparent in

other coral reef predators. Although few studies have
focused on movement patterns of wrasses, home
range sizes seem to vary with body size with small- to
moderate-sized species and individuals having small
home ranges <100m across (e.g. Thalassoma bifasciatum
and Bodianus rufus), larger species having home ranges
several kilometres long (e.g. Coris aygula), and the
largest species having home ranges up to 10 km long
(Cheilinus undulatus). By comparison, movement pat-
terns of goatfishes do not vary much, with most species
having home ranges <0.5–1 km long (e.g.Mulloidichthys
and Parupeneus species).
Many other large predatory fishes that are highly

mobile or nomadic (Gruss et al., 2011) are also typically
found in association with coral reefs (Bellwood, 1988),
including some species of jack, barracuda, snapper,
emperor and sweetlip. However, while many of these
species range over large distances (tens, hundreds and
thousands of kilometres), some exhibit site fidelity
within core areas <5–10 km across including some
jacks (e.g. Caranx ignobilis), barracuda (e.g. Sphyraena
jello), snappers (e.g. Aprion virescens), emperors (e.g.
Lethrinus mahsena) and sweetlips (e.g. Plectorhinchus
flavomaculatus).
Other snappers show a wide range of movement pat-

terns. Some species that are closely associated with coral
reefs have small home ranges (e.g. <100m across for
Lutjanus carponotatus), while others have home ranges
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up to several kilometres long (e.g. L. johni). Others
move long distances (e.g. tens to hundreds of kilome-
tres), which may represent ontogenetic shifts in habitat
or spawning migrations (e.g. for L. argentimaculatus and
L. campechanus).
Coral reef and coastal pelagic sharks (e.g. some

requiem, nurse and hammerhead sharks) have com-
plex movement patterns that vary with species, size,
reproductive status, ontogeny, tide, time of day, prey
availability and environmental conditions (reviewed
by Speed et al., 2010). Fidelity to sites <5–10 km long
is common in species that use nursery areas (e.g.
Carcharhinus amblyrhynchos and Negaprion brevirostris),
although some individuals make longer excursions
that extend far beyond their usual home ranges (e.g.
>100 km for C. amblyrhynchos and up to 1000 km for
N. brevirostris: Speed et al., 2010). Site fidelity to mating,
feeding and natal sites may be less common, and has
only been observed in a few species (e.g. Carcharhinus
melanopterus moves up to 50 km to specific pupping
areas in French Polynesia: Mourier & Planes, 2013). By
contrast, large coastal and oceanic sharks have been
recorded to move 1000s of kilometres (e.g. Carcharhinus
limbatus and Carcharhinus longimanus) with some under-
going transoceanic migrations (e.g. Galeocerdo cuvier
and Rhincodon typus), which may be a result of changing
reproductive status or shifting prey distribution (Speed
et al., 2010). Manta rays (Manta spp.) also show fidelity
to areas<50 km across (e.g. Clark, 2010), with excur-
sions that extend hundreds of kilometres beyond their
home range.
Pelagic species (that may be found in the proximity

of reefs, but which principally occur in open water and
have no direct dependence on reefs for food or shelter)
also typically move over very large (10–100 km) or
huge distances (hundreds to thousands of kilometres)
including mackerel and tuna (e.g. Scomberomorus and
Thunnus species), dolphinfish (Coryphaena hippurus),
billfishes (e.g. Makaira spp.) and swordfishes (e.g.
Xiphias gladius). These large-scale movements are most
likely part of ontogenetic and/or seasonal migrations
for feeding and breeding (e.g. Thunnus maccoyii move
up to 9000 km between feeding and breeding grounds:
Patterson et al., 2008). Despite many pelagic species
moving long distances, some species (or individuals)
use more limited areas. For example, Begg, Cameron
& Sawynok (1997) found that while school mackerel
(Scomberomorus queenslandicus) move up to 270 km, most
individuals move less than 50 km.

(2) Spawning migrations

Spawning migrations represent the movement of fish
from their home range to a spawning site. For many
coral reef fish species, the end result of a spawning
migration is the formation of a (fish) spawning aggrega-
tion (FSA), which by definition is a group of conspecific

fishes, gathered specifically for the purpose of spawn-
ing, with densities typically four times (or more) that
found in non-reproductive periods (Domeier, 2012; also
see Sadovy de Mitcheson & Colin, 2012, for a complete
review). To date, 119 species from 18 different fish fam-
ilies are known to form spawning aggregations (Choat,
2012; www.scrfa.org). FSAs may be comprised of a num-
ber of species, while individual sites may entertain mul-
tiple species simultaneously or sequentially over time.
FSAs are predictable events that occur at highly spe-

cific times and locations, making them particularly
susceptible to overfishing (Sadovy & Domeier, 2005;
Rhodes & Tupper, 2008; Domeier, 2012). Recent evi-
dence indicates that at least some FSA-forming species
of coral reef fishes utilise common migratory corridors
preceding or following reproduction (e.g. Starr et al.,
2007; Rhodes & Tupper, 2008; Rhodes et al., 2012).
Subgroups of reproductively active fish may also form at
nearby staging areas prior to and after migration to FSA
sites (Nemeth, 2012). Similar to the actual FSA, both
reproductive migratory corridors and staging areas
concentrate reproductively active fish in a manner that
enhances the potential for removal of individuals prior
to spawning.
FSAs generally fall within two primary categories: res-

ident and transient, which differ in the frequency of
occurrence, persistence of the aggregation, site speci-
ficity and the relative distance that fish migrate to reach
the site. Resident spawners tend to spawn frequently
throughout the year and travel short distances (metres
to hundreds of metres) to spawning sites nearby, which
are considered part of their home range (see Section
II.1). As such, resident spawners are less likely to be
impacted by fisheries when their home ranges are
enclosed in amarine reserve. Resident spawners primar-
ily include herbivorous and omnivorous fishes, such as
parrotfishes, surgeonfishes and wrasses (Colin, 2012).
By contrast, transient spawners often travel long dis-

tances (kilometres to hundreds of kilometres) over days
or weeks to reach specific spawning sites outside of their
home range (Domeier, 2012: Table 1 and Fig. 1, for
additional details see online Appendix S1). More often
than not, transient spawners include large-bodied and
commercially important fishes, such groupers, snap-
pers, emperors and rabbitfishes. Spawning sites for tran-
sient spawners tend to be concentrated on or near shelf
edges, whereas resident spawning aggregations may also
occur in inshore areas (Claydon, 2004; Colin, 2012).
Transient spawners tend to have relatively short repro-
ductive seasons compared with resident spawners, with
actual spawning confined to one or a few days toward
the end of the aggregation period. Between spawning
periods, fish participating in transient spawning aggre-
gations often travel back to their home ranges only to
return to the FSA site during subsequent reproductive
events, which may be as long as 1 year or as short
as several days away. Since these migrations are often
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extensive, fish may be drawn away from marine reserves
where they become subject to the fishery (e.g. Rhodes
& Tupper, 2008; Rhodes et al., 2012). For both resident
and transient aggregations, the area from which fish are
drawn to reproductive sites is referred to as the catch-
ment area, and no fishing in this area is often considered
necessary to fully protect FSA-forming species.

(3) Ontogenetic habitat shifts

Some coral reef fishes undergo ontogenetic shifts where
they use different habitat types (e.g. mangroves and sea-
grasses) as nursery grounds beforemoving to their adult
habitat on coral reefs (e.g. some parrotfishes, grunts,
snappers, surgeonfishes, jacks, barracuda, emperors,
groupers, goatfishes, wrasses and rabbitfishes: Smith &
Parrish, 2002; Mumby et al., 2004; Nagelkerken, 2007).
Many shark species also undergo ontogenetic habitat
shifts (reviewed in Speed et al., 2010; Chin et al., 2013a).
For instance, some coastal shark species use shallow
turbid waters in bays or rivers as nursery habitats before
moving offshore into deeper, clearer adult habitats (e.g.
some requiem and hammerhead sharks: Holland et al.,
1993b; Simpfendorfer & Milward, 1993; Knip et al.,
2011).
Other species use different depths, zones or habi-

tats on coral reefs at different stages in their life histo-
ries (e.g. some jacks, butterflyfishes, surgeonfishes and
sharks:Wetherbee et al., 2004; Claisse et al., 2009;Maypa,
2012). For example, some butterflyfishes prefer shal-
low coral reef habitats as juveniles, while adults are
more widely distributed throughout a range of depths
(e.g. Chaetodon auriga: Pratchett et al., 2008). Several
studies have also documented ontogenetic shifts among
coral reef habitats to fully protect sharks. For example,
Papastamatiou et al. (2009) found that juvenile black-
tip reef sharks (Carcharhinus melanopterus) show stronger
selection for shallow sand flats while adults prefer reef
ledges.
These ontogenetic shifts in habitat use have been

hypothesised as a trade-off between mortality risk and
growth or foraging rate, and may also reflect a change
in diet preferences with age, a mechanism to reduce
intraspecific predation or competition, or changes in
reproductive status (e.g. Dahlgren & Eggleston, 2000;
Mumby et al., 2004; Nagelkerken, 2007; Speed et al.,
2010). For example, the surgeonfish Zebrasoma flavescens
initially settle in deeper, structurally complex coral-rich
habitats that offer protection from predation, then shift
to a habitat with less shelter and more food as they grow
(Ortiz & Tissot, 2008; Claisse et al., 2009).
These ontogenetic shifts in habitat have important

consequences for the structure of coral reef fish assem-
blages and populations of key species (Nagelkerken,
2007). For example, Mumby et al. (2004) demonstrated
that the presence of juvenile habitat (mangroves) in
the vicinity of coral reefs exerts a profound impact on
community structure by elevating the adult biomass

of several species of parrotfishes, grunts and snap-
pers on reefs in the Caribbean (see also Nagelkerken,
2007). Several studies in the Indo-Pacific have also
demonstrated that some wrasses, parrotfishes, snap-
per, grouper and sweetlips are either absent or have
lower adult densities on coral reefs where their juvenile
habitats (mangroves, seagrasses or sheltered lagoonal,
backreef or inshore reefs) are lacking (e.g. Adam et al.,
2011; Olds et al., 2012; Wen et al., 2013). Coral reef
species that depend on juvenile habitats for popula-
tion maintenance include three species listed as Near
Threatened, Endangered or Vulnerable on the IUCN
Red List (www.iucnredlist.org): the humphead wrasse
Cheilinus undulatus; the bumphead parrotfish Bolbome-
topon muricatum; and the rainbow parrotfish Scarus
guacamaia (Mumby et al., 2004; Dorenbosch et al., 2005,
2006; Hamilton & Choat, 2012).
With some exceptions (e.g. Verweij et al., 2007; Papas-

tamatiou et al., 2009; Chin et al., 2013a), our under-
standing of these habitat shifts is generally based on indi-
rect evidence from studies comparing density and size
distributions of species in different habitats rather than
empirical measurements of movement patterns of key
species (e.g. Smith & Parrish, 2002; Simpfendorfer et al.,
2005; reviewed in Nagelkerken, 2007). While empiri-
cal evidence of ontogenetic shifts in habitat use is lim-
ited, some studies provide useful insights into the spatial
scale of these movements (Table 1 and Fig. 1, for addi-
tional details see online Appendix S1). For example, the
best available information suggests that some snappers
and damselfishes have ontogenetic shifts of <10–100s
of metres (e.g. Lutjanus apodus and Dascyllus aruanus),
while some jacks (e.g. Caranx ignobilis and C. sexfas-
ciatus) and grunts (Haemulon flavlineatum) undergo
ontogenetic shifts of more than 2–3 km (e.g. Maypa,
2012). Other species undergo much larger scale move-
ments. For example juvenile blackspot snapper (Lut-
janus ehrenbergii) and blacktip reef sharks (Carcharhinus
melanopterus) movemore than 30 and 80 km respectively
between coastal nursery habitats and reefs (McMahon,
Berumen & Thorrold, 2012; Chin et al., 2013a).

III. LARVAL DISPERSAL

How far larvae disperse clearly has important conse-
quences for designing effective reserves and reserve
networks. In the last few decades, research on larval dis-
persal in coral reef fishes has advanced rapidly. Since the
last review of this topic by Jones et al. (2009), a number
of new empirical studies have shed more light on the
spatial scale of larval dispersal, including the first stud-
ies of fishery species (Table 2). These new studies have
taken advantage of methodological and technological
innovations in the field of genetics (e.g. Planes et al.,
2009; Puebla, Bermingham & Guichard, 2009; Pinsky,
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Montes & Palumbi, 2010) to quantify how far larvae dis-
perse from their parents during the pelagic larval phase.
Despite substantial progress made during the past

decade, our understanding of the extent of larval disper-
sal, and how to use this information to inform marine
reserve design, remains preliminary. For example, pop-
ulation persistence within a marine reserve or a network
of reserves depends upon recruitment to the local popu-
lation, through local retention (the proportion of larvae
that return to their natal origin) and other connectiv-
ity pathways (Botsford et al., 2009b; Burgess et al., 2014).
However, while local retention is the appropriate metric
to use to assess the contribution of local production to
population persistence (Burgess et al., 2014), this is dif-
ficult (almost impossible?) to estimate empirically given
that the destination of all larvae produced at a particular
locationmust be known (Botsford et al., 2009b). Instead,
most studies have measured self-recruitment (i.e. the
proportion of recruits that are the offspring of parents
in the same population), which represents an unknown
proportion of local production. As such, the informa-
tion on larval dispersal synthesised here represents the
best information currently available to inform decisions
about the design of marine reserve networks. Our rec-
ommendations based on this information (see Section
IV.1) should be reviewed and refined as further empiri-
cal results emerge.
In order to develop guidelines for spatial manage-

ment, we sought to infer from available studies the
minimum, maximum and average larval dispersal dis-
tances for a range of species. Our objective was to
provide a general idea (based on empirical evidence
from 14 species in 12 studies: Table 2) of: how far
larvae usually settle from natal populations during
single-generation dispersal events; the consistency of
these dispersal patterns across species and through
time; and the probable shape of the dispersal kernel
(the likelihood of successful dispersal as a function of
distance from a source population).
It is important to note that the relatively few available

studies employed different methodological approaches
to measure larval dispersal including larval tagging,
genetic parentage analysis, genetic isolation-by-distance
and genetic assignment (Table 2). Each of these meth-
ods has its strengths and weaknesses. For example,
larval tagging and genetic parentage analysis can pro-
vide unequivocal empirical measurements of larval
dispersal but may underestimate average dispersal dis-
tance because the large sample sizes required by this
approach limit its application to relatively small spatial
scales (tens of kilometers). Genetic isolation-by-distance
methods, on the other hand, can be used across con-
siderably larger spatial scales (hundreds to thousands
of kilometers), but they require knowledge about the
effective population size (conceptualised as the number
of individuals in a population that contribute offspring
to the next generation), which is difficult to estimate

empirically (Pinsky et al., 2010). For consistency with
other metrics reported herein (see Section II), where
empirical measurements of dispersal were reported as
the size of the area occupied by the source population
(such as in measurements of % self-recruitment within
a particular area), we have converted these to a linear
measure by assuming that the area in question is a circle.
Estimates of self-recruitment to small areas of known

size provide an indication of the shortest distances that
reef fish larvae disperse. Several studies that employed
larval tagging and/or genetic parentage analysis on
anemonefishes (Amphiprion spp.) and a butterflyfish
(Chaetodon vagabundus) occupying areas of habitat with
a diameter of 505–800m (i.e. 20–50ha) have recorded
levels of self-recruitment ranging from16 to 72% (Jones,
Planes & Thorrold, 2005; Almany et al., 2007; Planes
et al., 2009; Berumen et al., 2012). By contrast, a genetic
parentage study of two fishery species (the grouper Plec-
tropomus maculatus and the snapper Lutjanus carpono-
tatus) occupying two marine reserves with diameters
of 677m (36ha) and 874m (60ha) recorded levels of
self-recruitment ranging from 0 to 16% (Harrison et al.,
2012). In these studies, some larvae were recorded to
have dispersed from as little as 10m to several hundred
metres from their parents (see also Buston et al., 2012).
Overall, evidence suggests that some reef fish larvae dis-
perse very short distances, and that self-recruitment is
common (see also Jones et al., 2009).
At the other end of the spectrum, in the studies

mentioned above on Amphiprion, Chaetodon, Plectropo-
mus and Lutjanus species, the furthest larvae have been
recorded to disperse is 28–36 km (which was as far
as the authors sampled from the source populations:
Table 2). However, reef fish larvae can and do disperse
greater distances. For example, studies of the damselfish
Stegastes partitus in the Caribbean (Hogan et al., 2012,
using genetic assignment: Table 2) and a subtropical
species of wrasse, Coris picta, in Australia (Patterson &
Swearer, 2007, using natural environmental markers in
otoliths) provided evidence of larval dispersal to 187
and∼570 km, respectively. However, these long-distance
dispersers are likely to represent the tail of the dispersal
kernel. While long-distance dispersers are clearly impor-
tant over evolutionary timescales, they are unlikely to
constitute a significant source of population replenish-
ment or connectivity over the ecological timescales that
are the focus of fisheries management and the design of
marine reserve networks.
Among the studies mentioned above, the genetic

parentage analysis by Almany et al. (2013) on a spawn-
ing aggregation of a grouper (Plectropomus areolatus) in
Papua New Guinea is the only one that could provide
a quantitative description of the probable shape of
the larval dispersal kernel of a fishery species over a
spatial scale that is relevant to reserve networks. The
study showed that the probability of successful larval
dispersal (and therefore the number of settlers arriving
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at a site) declined rapidly as a function of distance from
the source population. For instance, the dispersal ker-
nel suggested that the magnitude of larval settlement
>25 km from the source was <50% of the expected
settlement at or very close to the source (0–5 km). The
dispersal kernel also predicted that 50 and 95% of P. are-
olatus larvae settled within 13 and 33 km from the spawn-
ing aggregation, respectively. The dramatic decline in
larval connectivity with distance was consistent with
theoretical expectations (e.g. Siegel et al., 2003; Cowen
et al., 2006) and the results of the only other empirical
study of a reef fish (a non-fishery species) that estimated
the shape of a dispersal kernel over a much smaller
spatial scale (<1 km) (Buston et al., 2012).
Several studies that followed Jones et al. (2009) sam-

pled juveniles across a range of distances from the
larval source(s), which can be used to estimate mean
larval dispersal distance (Table 2). A number of studies
sampled across a range of distances from source popula-
tions to a maximum distance of between 28 and 36 km,
and used genetic parentage analysis to estimate mean
larval dispersal ranging between 4.8 km in an anemone-
fish (Amphiprion polymnus: Saenz-Agudelo et al., 2012)
and 14.4 km in a coralgrouper (Plectropomus areolatus:
Almany et al., 2013). Perhaps sampling over greater dis-
tances would result in larger mean estimates. Two stud-
ies (Puebla et al., 2009; Pinsky et al., 2010) employing
genetic isolation-by-distance methods on damselfishes
(Stegastes partitus and Amphiprion clarkii) sampled across
larger spatial scales (≥200 km), but provided mean dis-
persal estimates that are similar to those suggested by
the studies using parentage analysis (Table 2). However,
in one study using genetic assignment tests on S. partitus
(Hogan et al., 2012), mean dispersal was >10 times than
in the aforementioned studies (Table 2). Although
some studies have reported longer mean dispersal esti-
mates, most recent studies suggest that, on average, lar-
val dispersal in coral reef fishes across a variety of habitat
configurations and life-history characteristics may be
in the order of 5–15 km. Clearly, further studies on
different species and in different habitat configurations
would be useful in understanding to what extent this
is true.
Another key question involving larval dispersal and

the design of reserves and reserve networks is the degree
of consistency in both self-recruitment and connectiv-
ity from 1 year to the next. Three recent studies mea-
sured connectivity and self-recruitment over 2 or 3 years
(Table 2). Hogan et al. (2012) studied seven locations
scattered across 187 km for the damselfish Stegastes par-
titus. They found that some self-recruitment occurred
at each site in every year, but that the proportion
of self-recruitment at a site varied among years, rang-
ing from 0 (one site in 1 year) to 50%, with an over-
all site average of 15%. Similarly, connectivity among
sites varied between years, but there was no evidence
that the strength of connectivity was related to the

distance between sites. Berumen et al. (2012) measured
self-recruitment at a single, isolated island and connec-
tivity between that island and two coastal sites located
25 and 33 km away for Amphiprion percula and Chaetodon
vagabundus. They found that mean self-recruitment at
the island was similar for both species and over 2 years,
ranging between 40 and 65%. However, the strength of
connectivity between the island and the two distant sites
varied significantly between years for A. percula (connec-
tivity for C. vagabundus was only measured in a single
year). Finally, Saenz-Agudelo et al. (2012) conducted a
3-year study of a metapopulation of A. polymnus consist-
ing of nine subpopulations spread over 35.5 km. They
found that at both the level of the entire metapopu-
lation and at the subpopulation level, self-recruitment
was similar among years. However, unlike the two pre-
vious studies, they found that connectivity between sub-
populations was broadly similar among years, and that
the magnitude and temporal stability of connectivity
between sites was related to the distance between sites.
Overall, these temporal studies reinforce the assertion
that self-recruitment is common in coral reef fish pop-
ulations, while highlighting that connectivity between
sites can be variable or consistent over time, perhaps as a
result of species- or location-specific factors (Jones et al.,
2007; Pinsky et al., 2012).

IV. IMPLICATIONS FOR CONSERVATION AND
MANAGEMENT

(1) Implications for marine reserve network design

In the past decade, many papers and policy documents
have put forth guidelines that have emphasised the
need to incorporate ecological patterns of connectivity
in marine reserve network design (e.g. Palumbi, 2004;
Almany et al., 2009; McCook et al., 2009). However in
this context, connectivity is often poorly defined, and
guidelines that specifically address connectivity have
focused on providing general guidance (e.g. take a
system-wide approach that considers patterns and pro-
cesses of connectivity within and among ecosystems:
McCook et al., 2009) or rules of thumb for size and
spacing of marine reserves to protect most species (e.g.
McLeod et al., 2009).
Specific scientific advice regarding the configuration

of marine reserves with respect to movement patterns of
focal species can form an invaluable input to the MPA
network design process, as demonstrated by the imple-
mentation of a state-wide network of MPAs in California
that was informed by movement patterns of temperate
species (Gleason et al., 2013; Saarman et al., 2013). Our
synthesis of new information on the connectivity pat-
terns of coral reef and coastal pelagic fishes allows us, for
the first time, to provide specific advice on how to use
connectivity to determine the size, spacing and location
of marine reserves in tropical marine ecosystems, to
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maximise benefits for conservation and fisheries man-
agement of a range of taxa.
Marine reserves can be designed to provide protec-

tion for a broad array of species of interest (e.g. in
a biodiversity conservation context) or a handful of
important species (e.g. in a fishery management con-
text) or a combination of both (Gaines et al., 2010).
Where the primary objective is to protect a few focal
species, these guidelines can be specifically tailored to
those species and their movement patterns. Where pro-
tecting multiple key species or a broad range of taxa
is the focus, it may be necessary to identify a range of
reserve sizes and spacing that maximises benefits across
these taxa.

(a) Size

For marine reserves to protect biodiversity and enhance
populations of fisheries species in fished areas, they
must be able to sustain target species within their bound-
aries throughout their juvenile and adult life-history
phases, when they are most vulnerable to fishing pres-
sure (Palumbi, 2004; Hastings & Botsford, 2006; Gaines
et al., 2010). This will allow for the maintenance of
spawning stock, by enabling individuals within reserves
to grow to maturity, increase in biomass and reproduc-
tive potential, and contribute more to stock recruitment
and regeneration (Russ, 2002).
Marine reserve size should therefore be determined

by the rate of export of adults and juveniles (‘spillover’)
to fished areas. Whilst spillover directly benefits adja-
cent fisheries, if the reserve is too small, excessive
spillover may reduce fish density and biomass inside
the reserve (Kramer & Chapman, 1999; Botsford et al.,
2003; Gaines et al., 2010). This trade-off has led to diver-
gent recommendations regarding the size of marine
reserves for different objectives. From a conservation
perspective, larger reserves (e.g. 10–20 km in diameter)
are recommended because they enhance population
persistence by increasing the protection of larger pop-
ulations of more species (IUCN-WCPA, 2008; McLeod
et al., 2009; Gaines et al., 2010; Saarman et al., 2013). By
contrast, smaller reserves (0.5–1 km across) have been
recommended for fisheries management, since they
protect some species and allow for the export of adults
and larvae to fished areas, leading to direct benefits to
fishers and potential increases in levels of recruitment
(e.g. Alcala & Russ, 2006; Jones et al., 2007; Harrison
et al., 2012).
Accordingly, marine reserve size should be informed

by both management objectives and home range sizes
of adults and juveniles of focal species (Table 1 and
Fig. 1). Ideally, this information should be combined
with knowledge of how individuals are distributed rel-
ative to one another (e.g. in exclusive versus overlap-
ping ranges) to determine how many individuals a
marine reserve of a specific size will protect. In the long
term, this information might be accumulated through

meta-analyses of fish densities from within well-designed
and effectively implemented marine reserves, and mod-
els developed to refine recommended reserve sizes for
species that take all aspects of their movement patterns
into account.
Until such models are developed, we recommend that

marine reserves should be more than twice the size
of the home range of focal species for protection (in
all directions, see Table 1). This will ensure that the
reserve includes the entire home range of at least one
individual, and will likely include many more where
individuals have overlapping ranges (noting that a suf-
ficiently large proportion of the meta-population must
be protected overall: see Section IV.1d). For species
that undergo ontogenetic shifts in habitat use, smaller
marine reserves may be appropriate for nursery habitats
if juveniles have smaller home ranges than adults (e.g.
for some sharks: Speed et al., 2010).
Some species (e.g. some groupers, surgeonfishes,

grunts, snappers, goatfishes and parrotfishes) can be
protected within small marine reserves (0.5–1 km
across) because they do not move very far, while oth-
ers are more wide-ranging (e.g. some jacks, sweetlips,
groupers, wrasses, parrotfishes, snappers, emperors and
sharks) and require medium to large marine reserves
(2–5 or 10–20 km across, respectively: Table 1 and
Fig. 1). Others move long distances and require very
large marine reserves (20–100 km across or larger)
such as some snappers, jacks, most sharks and manta
rays. Since highly migratory pelagic fishes (e.g. tuna,
billfishes and some mackerel) and oceanic sharks can
range over much larger distances, marine reserves are
likely to have limited utility for these species unless the
reserves are thousands of kilometres across. Species that
move over larger distances than a reserve size will only
be afforded partial protection; however, reserves can
provide benefits for these species if they protect specific
locations where individuals aggregate and become
especially vulnerable to fishing mortality (see Section
IV.1c) (Norse et al., 2005).
Optimal size will also depend on the level of resource

use and the efficacy of other management tools.
Where fishing pressure is high and there is no addi-
tional effective fisheries management in place outside
reserves, then networks of both small and large marine
reserves will be required to achieve both biodiver-
sity and fisheries objectives. However, if additional
effective management is in place outside reserves for
wide-ranging species, then networks of small marine
reserves can contribute to achieving both conservation
and fisheries objectives (provided that a sufficiently
large proportion of the meta-population is protected
overall: see Section IV.1d).
A preliminary analysis of long-term monitoring of

marine reserves in the Philippines suggests that using
these recommendations for marine reserve size to
protect focal species (Table 1) is likely to be successful.
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For example, species that do not move very far (e.g. the
unicornfish Naso vlamingii, the surgeonfish Ctenochaetus
striatus and small groupers such as Cephalopholis argus
that move <0.1–0.3 km: Table 1) have shown significant
increases in their density and abundance within small
marine reserves such as Apo Island Marine Reserve
(Russ et al., 2004; Abesamis & Russ, 2005), which
encompasses a 0.5 km long section of coral reef that
is similar to the minimum marine reserve size recom-
mended for those species (0.2–0.6 km: Table 1). Apo
Island also demonstrates that small reserves can provide
benefits for some wide-ranging species (e.g. the jack
Caranx sexfasciatus that has core areas of use <3 km
across), where they are combined with other fisheries
management strategies (Maypa et al., 2002; Maypa,
2012). By contrast, some species that move further and
are more vulnerable to fishing (e.g. sharks that have
core areas of use up to 10 km across such as Carcharhi-
nus melanopterus and Triaenodon obesus) have not shown
increases in their populations in this small reserve (A.
White & R. Abesamis, personal observations). However,
these shark species have shown a dramatic recovery in
their density and biomass in the much larger Tubbataha
Natural Park (A. White, unpublished data), which is
a marine reserve that has a maximum reef length of
20 km that is large enough to protect these species.
Sharks and jacks have also been found to be more abun-
dant in larger versus smaller MPAs in others studies (e.g.
in Hawaii: Friedlander, Brown & Monaco, 2007).
However, it is important to note that these recommen-

dations regardingminimum reserve size based onmove-
ment patterns of focal species must apply to the habitats
that adults and juveniles of these species use (rather
than total size of themarine reserve per se). For example,
if a reserve includes seagrass, coral reef and open water
habitats, for species that use reef habitats only, the mini-
mum size refers to the reef habitat that these species use
within the reserve.
Larval dispersal also has implications for marine

reserve size. For instance, Botsford, Hastings & Gaines
(2001) recommended that reserves must be larger than
the mean larval dispersal distance (at least twice the
size) of the species they aim to protect in order for
reserve populations to be self-sustaining. Since the best
available empirical evidence indicates that coral reef
fish larvae tend to settle on average 5–15 km from their
parents (see Section III), reserves more than 10–30 km
across are likely to be self-sustaining for these species.
While smaller reserves are more likely to be sustained
by connectivity with other populations rather than by
self-seeding, the available empirical evidence also shows
that self-recruitment at more limited spatial scales
(<1 km) is common, indicating that a certain degree
of larval retention usually occurs and that some larvae
have limited dispersal. Thus, smaller reserves may still
provide recruitment benefits within and close to their
boundaries.

(b) Spacing

Benefits for both conservation and fisheries manage-
ment are increased by placing reserves within a mutu-
ally replenishing network (McLeod et al., 2009), with
spacing such that reserves are highly connected to one
another through larval dispersal (Shanks, Grantham &
Carr, 2003; Palumbi, 2004; Almany et al., 2009; Gaines
et al., 2010) while providing recruitment subsidies to
fished areas (Botsford et al., 2001, 2003, 2009a; Almany
et al., 2009). Data from the available empirical studies
(Table 2) indicate that reef fish larvae tend to settle close
to their parents and that linkages between local popu-
lations via larval dispersal are more likely to occur at
limited distances (few tens of kilometers). Across species
and locations, reef fish larvae appear to settle within
5–15 km of their parents on average; some larvae dis-
perse up to 35 km from their parents, and a few lar-
vae may disperse several hundred kilometres. At the
same time, self-recruitment, even to small areas of habi-
tat (diameters of 0.5–0.9 km), appears to be common
and to occur consistently through time, indicating that
short-distance dispersal is relatively frequent. This infor-
mation is consistent with the prediction that the proba-
bility of successful larval settlement (and therefore the
magnitude of recruitment) declines considerably with
increasing distance from a source population (e.g. a
reserve).
In terms of reserve spacing, the diminishing probabil-

ity of successful larval dispersal with increasing distance
from a source population (i.e. the shape of the dispersal
kernel) may lead one to assume that situating reserves
within a certain minimum distance from one another
will provide sustaining recruitment (i.e. recruitment suf-
ficient to equal or exceed natural mortality in a pop-
ulation; see Steneck et al., 2009). However, there is no
evidence to support this at present. At best, the avail-
able evidence suggests that larval connections between
reserves are likely to be stronger at more limited spatial
scales, e.g. <15 km.
Until better information is available, we recommend a

maximum spacing distance between reserves of 15 km.
This spacing distance is about 2–3 times greater than
the typical larval dispersal distance estimated for several
fishery and non-fishery species (Puebla et al., 2009; Pin-
sky et al., 2010; Harrison et al., 2012; Puebla, Berming-
ham & McMillan, 2012; Saenz-Agudelo et al., 2012) but
conservative compared to the dispersal potential of
other species (Table 2). Spacing reserves no more than
15 km apart will likely enhance the recruitment effect
of reserves to other reserves and fished areas within
that spatial scale. We further recommend that if reserves
tend to be small as they are in certain regions (<1 km2:
see Section IV.1d), the spacing distance between them
should be less than 15 km because the magnitude of lar-
val export from the small source populations in these
reserves will probably be less than from larger source
populations in larger reserves.
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Our recommendations with regards to spacing
reserves may require revision as additional information
from methods that can explicitly consider population
persistence within reserve networks becomes available.
However, it may be some time before information from
such methods are available since they require empirical
estimates of larval dispersal as well as information on
population size, survival, and fecundity within patches
(Burgess et al., 2014).

(c) Location

The location of marine reserves should largely be
informed by information about the distribution of key
habitats utilised by focal species and movement pat-
terns of adults and juveniles among them (e.g. Olds
et al., 2012). Since areas with high habitat connectivity
can improve reserve performance (by supporting more
species and maintaining ecosystem processes), these
areas should be prioritised for protection (Edwards
et al., 2010; Olds et al., 2012).
Furthermore, the location of a reserve to protect a par-

ticular species or group of species must be placed in the
habitats that are suitable for the home ranges of those
species. For example, marine reserves focused on pro-
tecting sharks should include coral reef habitats where
reef sharks aggregate or show fidelity to specific sites
(nursery, reproduction or feeding areas: see Section
II.1), and extend a significant distance from the reef to
incorporate deep-water foraging habitats of other shark
species (e.g. Carcharhinus albimarginiatus and Sphyrna
lewini: Hearn et al., 2010; Barnett et al., 2012).
To provide adequate protection for species that

undergo ontogenetic habitat shifts, some portion of
each habitat utilised by juveniles (e.g. recruitment
hotspots: Wen et al., 2013) and adults should be pro-
tected within the same reserve. If multiple small
reserves protecting different habitats are more feasible,
they must be spaced to allow for movement among
protected habitats.
For species that undertake spawning migrations, it is

important to protect FSAs, migratory corridors and stag-
ing areas, in addition to protecting the home range
of a sufficiently large proportion of their population
(Rhodes & Tupper, 2008; Rhodes et al., 2012). If the
temporal and spatial location of these critical areas is
known, they should be protected in permanent or sea-
sonal marine reserves (Zeller, 1998; Sadovy & Domeier,
2005; Rhodes & Tupper, 2008; Rhodes et al., 2012). If
the location of these areas is not known, or if the scale
of movement is too large to include in marine reserves
(e.g. migration corridors), other management actions
will be required (see Section IV.2).
Another consideration when placing reserves is max-

imising their potential to provide a source of larvae to
other reserves and fished areas (Gaines et al., 2010). A
common recommendation is to protect larval ‘source’
populations (e.g. Roberts et al., 2006; Almany et al.,

2009), which can consistently provide larvae to other
populations. In practice, identifying source populations
is difficult and typically relies on oceanographic mod-
elling (e.g. Bode, Bode & Armsworth, 2006). Further-
more, our review of larval dispersal studies indicates that
delivery of larvae from one site to another is likely to
vary in time, such that a location might act as a source
in 1 year, but not another. Consequently, we recommend
that marine reserves are located on the basis of key habi-
tats and fish movements among these. However since
currents are likely to influence dispersal to some degree,
if there is a strong, consistent, unidirectional current, a
greater number of marine reserves should be located
upstream relative to fished areas.
Another aspect of larval dispersal that is relevant to

selecting reserve sites is the need to protect spatially
isolated populations (e.g. remote atolls). Isolated pop-
ulations that are largely self-replenished have high con-
servation value, especially where they harbour endemic
species and/or unique assemblages (Jones, Munday &
Caley, 2002; Roberts et al., 2006). Low connectivity with
other areas makes these locations less resilient to distur-
bance, so protecting a large fraction of their area may
be required to ensure population persistence (Almany
et al., 2009). Pinsky et al. (2012) suggest that populations
or locations separated from their nearest neighbour
by more than twice the standard deviation of larval
dispersal would be largely reliant on self-recruitment
for replenishment. In this context, and given the data
so far obtained from dispersal studies, conservatively,
a location or population >20–30 km from its nearest
neighbour should be considered isolated and afforded
greater protection.

(d) Consideration of broader ecological and social factors

The recommendations proposed above are based on
larval dispersal and movement patterns (connectivity)
alone. To inform real-world planning initiatives, these
guidelines must be considered alongside other ecologi-
cal criteria (Green et al., 2014), and applied within dif-
ferent, context-dependent, socioeconomic and gover-
nance constraints (Walmsley &White, 2003; Ban, Picard
& Vincent, 2009; Lowry, White & Christie, 2009; Ban
et al., 2011).
In addition to connectivity, there are other ecological

considerations required to ensure that marine reserves
are designed tomaximise their benefits for conservation
and fisheries management (reviewed in IUCN-WCPA,
2008; McLeod et al., 2009; Green et al., 2014). They
include: representing 20–40%of each habitat inmarine
reserves (depending on fishing pressure, other fishery
management measures, and the availability or rarity of
habitats) to ensure that a sufficiently large proportion
of the meta-population is protected overall; protecting
at least three widely separated examples of each habi-
tat in marine reserves (to minimise the risk that they
might all be adversely impacted by a single disturbance);
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ensuring marine reserves are in place for the long
term (preferably permanently); protecting special and
unique areas in marine reserves (e.g. resilient sites,
turtle nesting areas, FSAs); minimising and avoiding
threats (such as land-based runoff) in marine reserves;
and creating large multiple-use MPAs that include (but
are not limited to)marine reserves.Whilstmany of these
guidelines can be applied alongside our recommenda-
tions regarding connectivity, some might create design
trade-offs that need to be resolved. For example, small
reserves should be spaced close together to maximise
connectivity between them (see Section IV.1b), but this
might require further replication of habitats inmore dis-
tant reserves due to the increased likelihood of closely
spaced reserves being impacted by a single disturbance
event.
Social, economic and cultural factors often deter-

mine the degree to which ecological criteria regard-
ing the optimal configuration of marine reserves can
be applied (Ban et al., 2009, 2011; Lowry et al., 2009;
Gleason et al., 2013). For example in some situations,
large marine reserves might be a viable option, e.g. in
California (Gleason et al., 2013) or in remote oceanic
areas with small or no human populations (e.g. Tub-
bataha Reef, Philippines: Green et al., 2011). However,
inmany countries with coral reefs, especially where com-
munities rely heavily on these reefs for their livelihoods,
large reserves are both socially and politically impracti-
cal (Ban et al., 2011). In these settings, smaller reserves
are more acceptable to local communities because they
exclude smaller areas fromfishing and fit within custom-
arymarine tenure boundaries or local government juris-
dictions (Kramer & Chapman, 1999; Ban et al., 2009).
In these cases, reserves are commonly much smaller
(∼1 km across: e.g. Weeks et al., 2010) than typically rec-
ommended (e.g. 3–10 km across: Halpern & Warner,
2003; Shanks et al., 2003).
Many previous recommendations for marine reserve

design from a conservation perspective have conveyed
the message that ‘bigger is better’ (e.g. Sale et al., 2005;
IUCN-WCPA, 2008; McLeod et al., 2009). Whilst the
results of this review reinforce this idea since larger
reserves are able to provide protection for a broader
range of species (Table 1, Fig. 1), they also demon-
strate that smaller reserves can be effective for some
species and objectives. For example, small reserves (e.g.
0.5–1 km long) are capable of providing protection for
adults of fishery species that do not move very far (e.g.
small groupers, parrotfishes, surgeonfishes and uni-
cornfishes). Furthermore, self-recruitment seems highly
probable even in small reserves. Thus small reserves
should contribute to overall reserve network connectiv-
ity and persistence for some species provided that the
reserves collectively represent aminimumproportion of
the habitat of these species (20–40%) and they are close
enough to each other to be connected by larval disper-
sal (Botsford et al., 2001; Kaplan & Botsford, 2005). This

conclusion is supported by empirical evidence that net-
works of small, well-designed and effectively managed
marine reserves can provide local fisheries benefits for
some species through adult spillover and larval export
(e.g. Russ et al., 2004; Harrison et al., 2012; Almany et al.,
2013).
Nevertheless, for species with extensive movement

patterns such as bumphead parrotfish, the minimum
linear dimension of marine reserves would need to be
at least 20 km (Table 1), which is much larger than
the size typically implemented by coastal communities
in many countries (most community-based marine
reserves in Southeast Asia and the Pacific are <1 km
across: e.g. Weeks et al., 2010). Where marine reserves
are smaller than the home ranges of species of interest,
management strategies must be diversified to include
alternative fisheries management tools designed to
protect wide-ranging species outside reserves (see
Section IV.2).

(2) Implications for other management strategies

Information regarding larval dispersal and movement
patterns of populations of key species can also be used
to inform other management strategies where marine
reserves are either insufficient (e.g. for species that
have large home ranges or undergo long-distance onto-
genetic shifts or spawning or breeding migrations) or
impracticable (e.g. where large marine reserves are not
enforceable or favoured by communities). Alternative
fisheries management strategies might include harvest
controls such as catch, size, gear or effort restrictions,
or outright bans on fishing for selected species or time
periods to protect species with large home ranges or
high vulnerability to fishing due to life-history charac-
teristics (Hilborn et al., 2006; Speed et al., 2010; Sadovy
de Mitcheson & Colin, 2012).
In many places, small marine reserves may be the only

feasible spatial management tool (Alcala & Russ, 2006).
However, in some contexts itmay be possible to combine
marine reserves with other spatial management tools to
protect a broader range of species while also address-
ing socioeconomic and feasibility considerations. This
may include combining marine reserves with adjacent
limited-take or ‘buffer’ zones that provide additional
protection for wide-ranging species that are unlikely to
be protected within small marine reserves (e.g. hump-
head wrasse, bumphead parrotfishes and large grouper)
or for all species except those that move over very
large distances that are unlikely to benefit from marine
reserves and are important for food security or eco-
nomic reasons (e.g. tuna: see Gleason et al., 2013; Saar-
man et al., 2013). By combining these spatial manage-
ment approaches, greater protectionmight be provided
tomore species over larger areas than could be achieved
with marine reserves alone. For example in Palau, the
protected area network is combined with legislation to
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protect wide-ranging species in a national shark sanctu-
ary (www.sharksanctuary.com).
Coral reef species that move long distances to spawn

(see Section II.2), are also likely to require a combined
approach to management that protects their home
ranges and spawning sites within reserves, and prohibits
the capture and sale of reproductive adults during
spawning migration and aggregation periods (Rhodes
et al., 2012) to prevent overfishing. Similar approaches
might be required to protect species that undergo
ontogenetic shifts in habitat use (i.e. seasonal fisheries
restrictions during critical phases in their life history).
Other management strategies may also be required to
protect critical habitats, such as improved land use to
protect coral reefs, mangroves and seagrass (Sanchirico
& Mumby, 2009).

(3) Practical advice for practitioners

Of the suite of ecological criteria for marine reserve
network design, connectivity has been one of the most
challenging to put into practice (Almany et al., 2009;
McCook et al., 2009), since empirical data for move-
ment patterns of important species have typically been
unavailable or inaccessible to those responsible for plan-
ning. Syntheses of available information for a broad
array of taxonomic groups (combined with local knowl-
edge) can help to overcome the problem of poor data
availability in designing marine reserves for connectiv-
ity. However, a new challenge emerges in how to apply
this information in different socioeconomic contexts.
The maximum size at which reserves are likely to

be feasible (given socioeconomic constraints) may ulti-
mately drive reserve design, but this should be informed
by information regarding which species will or will not
likely benefit from reserves, given their configuration
(size, location, and distance from other reserves). In
many contexts it will not be feasible, for example, to
create marine reserves that are sufficiently large to
protect the full range of species occurring within a
region. However, having information on how different
sizes of reserves may benefit different species provides
a foundation for reserve design against which feasibility
trade-offs can be explicitly evaluated. For example
in a temperate context, information on adult move-
ment patterns and larval dispersal distances informed
easy-to-understand guidelines for size and spacing of
marine reserves in a state-wide MPA network in Cali-
fornia (Saarman et al., 2013). The guidelines provided
a framework that allowed participants to understand
better which species might benefit from different sizes
and spacing of MPAs, which informed a more realistic
evaluation of trade-offs between protection and other
socioeconomic considerations (Gleason et al., 2013).
Information on species movement patterns can

inform marine reserve network design in two ways – by
identifying focal species for protection and deter-
mining the reserve configuration needed to protect

them, or by using the configuration of proposed or
existing reserves to evaluate which species might be
protected within their boundaries (Fig. 2). Where
reserve configurations are likely to be inadequate to
protect focal species, their design should be refined
or additional management tools will be required (see
Section IV.2). This information can also be used to
inform the design of programs to monitor the effec-
tiveness of marine reserves by ensuring they focus on
species likely to be protected by reserves with different
configurations.

V. CONCLUSIONS

(1)Well-designed and appropriatelymanagedmarine
reserves can be effective tools for biodiversity protec-
tion and fisheries management in tropical marine
ecosystems. Benefits for both of these objectives can
be increased by taking larval dispersal and movement
patterns of focal species into account in marine reserve
design.
(2)Marine reserves should bemore than twice the size

of the home range of adults and juveniles of focal species
for protection (in all directions).
(3) Some species (e.g. some groupers, surgeonfishes,

grunts, snappers, goatfishes and parrotfishes) can be
protected within small marine reserves (<0.5–1 km
across) because they do not move very far, while
more wide-ranging species (e.g. some jacks, sweet-
lips, groupers, wrasses, parrotfishes, snappers, emper-
ors and sharks) require medium to large (2–5 or
10–20 km across, respectively) or very large marine
reserves (20–100 km across or larger). Marine reserves
may have limited utility for highly migratory pelagic
fishes (e.g. tuna, billfishes and sharks) that range over
much larger distances unless the reserves are thousands
of kilometres across.
(4) Optimal size will also depend on the level of

resource use by people and the efficacy of other
management tools: where fishing pressure is high
and there is no additional effective fisheries man-
agement in place outside reserves, then networks of
both small and large marine reserves will be required
to achieve both biodiversity and fisheries objectives;
if additional effective management is in place for
wide-ranging species, then networks of small marine
reserves can contribute to achieving both conserva-
tion and fisheries objectives (provided a sufficiently
large proportion of the meta-population is protected
overall).
(5) Marine reserves should include key habitats

utilised by focal species (for home ranges, nursery
grounds, migration corridors and spawning aggrega-
tions), and be located to accommodate movements
among them.
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Establish marine reserves at 
least as large as the minimum 
recommended sizes for these 
species in appropriate home 
range habitat types 

Determine if these species 
undergo spawning 
migrations or ontogenetic 
habitat shifts  

Identify focal 
species for 
protection 

Identify home range habitat 
types, home range sizes and 
minimum recommended 
marine reserve sizes for 
these species 

Space marine reserves <15 
km apart (the smaller the 
reserves, the closer they 
should be) 

If so, include critical habitats (e.g. FSAs, 
migration pathways, staging areas, nursery 
habitats) in marine reserves at critical times 

Ensure marine reserve design complies with other ecological and social 

considerations (e.g. 20–40% habitat representation)

If marine reserves comply 
with these recommendations, 
these species are likely to be 
protected 

(B)

(A)

Determine if focal species 
undergo spawning migrations 
or ontogenetic habitat shifts 

Identify marine 
reserve sizes and 
locations 

Determine if focal species are likely to be protected based on 
their home range habitat types, home range sizes and minimum 
recommended marine reserve sizes 

If so, confirm critical habitats are protected (e.g. 
FSAs, migration pathways, staging areas, 
nursery habitats) in marine reserves at critical 
times 

Determine if marine 
reserves are spaced <15 km 
from each other (the smaller 
the reserves, the closer they 
should be)

Ensure marine reserve design complies with other ecological and social 

considerations (e.g. 20–40% habitat representation) 

If marine reserves do not  
comply with these 
recommendations, either 
refine marine reserve 
design or use alternative 
management tools to 
protect these species (e.g. 
permanent or seasonal 
species, catch, size, gear, 
sale or effort restrictions) 

If marine reserves comply 
with these recommendations, 
these species are likely to be 
protected  

If marine reserves do not  
comply with these 
recommendations, either 
refine marine reserve design 
or use alternative 
management tools to protect 
these species (e.g. 
permanent or seasonal 
species, catch, size, gear, 
sale or effort restrictions) 

Fig. 2. Protocol for using connectivity information for marine reserve network design and adaptive management using
either (A) focal species for protection or (B) marine reserve sizes and locations as starting points. Focal species may be
high-priority species for fisheries, tourism or conservation (e.g. species listed as Vulnerable or Endangered on the IUCN
Red List); home range habitat type is available in local fish identification guides and Fishbase (http://www.fishbase.org/);
movement patterns (home range sizes, spawning migrations and ontogenetic habitat shifts) are summarized by taxa in
Table 1 and Appendix S1, and by distance in Fig. 1; minimum recommended reserve sizes are provided in Table 1; and
other ecological and social considerations are discussed in Section IV.1d. If a focal species is not listed in Table 1, Fig. 1 or
Appendix S1, similar taxa might be appropriate proxies but caution should be taken when applying this approach. FSA,
fish spawning area.

(6) Species whose movement patterns are larger than
a reserve size will only be afforded partial protection;
however, reserves can provide benefits for these species
if they protect specific locations where individuals aggre-
gate and become especially vulnerable to fishingmortal-
ity (e.g. FSAs).
(7) Marine reserve benefits are increased by placing

reserves within mutually replenishing networks with
spacing such that reserves are connected to one another
by larval dispersal of focal species, while providing
recruitment subsidy to fished areas.
(8) Larval dispersal distances of coral reef fishes

tend to be <5–15 km, and self-recruitment seems more
common than previously thought, thus: reserve spac-
ing should be <15 km with smaller reserves spaced
closer together (although these recommendations
may require revision as more information becomes
available), isolated populations (>20–30 km from
their nearest neighbour) should be afforded greater

protection, and large marine reserves are more likely
to be self-sustaining (although small reserves can pro-
vide recruitment benefits within and close to their
boundaries).
(9) Larval sources are temporally variable and diffi-

cult to identify. So if there is a strong, consistent, unidi-
rectional current, a greater number of marine reserves
should be located upstream relative to fished areas.
(10) These recommendations can be used by practi-

tioners to: design marine reserve networks to maximise
benefits for focal species; review the configuration of
existing marine reserves to ensure they are adequate
to protect focal species; integrate marine reserves with
other fisheries management tools; and refine monitor-
ing programs to measure the effectiveness of marine
reserves.
(11) These recommendations for marine reserve

network design regarding connectivity of reef fish
populations must be considered alongside other
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ecological design criteria, and applied within different,
context-dependent, socioeconomic and governance
constraints.
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VIII. SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article.
Appendix S1. Detailed summary of movement patterns
reported for adult and juvenile coral reef and coastal
pelagic fishes for a range of movement types, locations
and habitat types based on a variety of methods and
parameters.

Appendix S2. Methods used for adult and juvenile
movement studies.
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